Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Ming Zhang,^a Rui-Qin Fang,^a Hai-Shun Wu^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.006 Å R factor = 0.048 wR factor = 0.133 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis[µ-3-phosphonopropionato(2–)]bis[aqua-(1,10-phenanthroline)copper(II)]

Each Cu atom in the centrosymmetric dinuclear title compound, $[Cu_2(C_3H_5O_5P)_2(C_{12}H_8N_2)_2(H_2O)_2]$, is chelated by an *N*-heterocycle and is also coordinated by a molecule of water. The two Cu atoms are bridged by the 3-phosphonopropionate(2–) unit, giving rise to a square-pyramidal geometry for the metal centre. The molecules are linked by hydrogen bonds into a layer structure.

Received 4 November 2003 Accepted 17 November 2003 Online 22 November 2003

Comment

Whereas metal phosphonates, which have a variety of applications (Clearfield, 1998; Zhu et al., 2000), have been well studied, only a few metal derivatives of the phosphonocarboxylic acids, such as phosphonoacetic acid and 3-phosphonopropionic acid, have been characterized to date (Stock et al., 2000). The phosphonoacetate homologue was crystallographically authenticated in the first salt $K_4[Cu(O_2CCH_2PO_3)_2 \cdot H_2O] \cdot 6H_2O$ (Afonin et al., 1998). The Cu 3-proprionato(3-) analogue has also been authenticated, in $[Cu_3(O_2CCH_2CH_2PO_3)_2] \cdot 8H_2O$ (Britel *et al.*, 1985). The present Cu complex was synthesized by reacting a copper salt with trimethyl 3-phosphonopropionate under hydrothermal conditions; the ester underwent cleavage of the three ester bonds to yield the title aquacopper derivative, (I), which crystallizes as a centrosymmetric dimer.

The Cu atoms in (I) are each chelated by an N-heterocycle. The two Cu atoms are bridged by the 3-phosphonopropionato(2-) unit and they are also each coordinated by one water molecule, giving rise to a square-pyramidal geometry for the metal atom (Fig. 1, Table 1). The molecules are linked by hydrogen bonds (Table 2) into a layer structure. The interdimer hydrogen bond involving the -PO₃ unit $[O3 \cdot \cdot \cdot O2^{i} 2.569 (4) \text{ Å}; \text{ symmetry code: (i) } 1 - x, 1 - y, 1 - z]$ is particularly short and leads to the formation of a linear chain (Fig. 2). The doubly bonded O atom is also involved in an intradimer hydrogen bond to the water molecule $[O1W \cdots O2 \quad 2.732 \text{ (4) } \text{Å}].$ The interchain interaction $O1W \cdots O4^{ii}$ [2.789 (4) Å; symmetry code: (ii) x - 1, y, z] gives rise to a layer structure. The bond dimensions within the anionic ligand of (I) are comparable with those found in ammonium salts of the parent acid (Bowes et al., 2003).

Figure 1

A view of the dimer of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii [symmetry code: (i) 2 - x, 2 - y, 1 - z].

A view of the linear chain structure in (I) arising from the short interdimer hydrogen bond [symmetry code: (i) 1 - x, 1 - y, 1 - z].

Experimental

Copper diacetate dihydrate (0.20 g, 1 mmol), trimethyl 3-phosphonopropionate (0.23 g, 1 mmol), 1,10-phenanthroline (0.20 g, 1 mmol) and water (7 ml) were placed in a 15 ml Teflon-lined stainless-steel bomb, which was then heated at 433 K for 120 h. The bomb was cooled slowly to room temperature and blue needle-shaped crystals of (I) were isolated in about 50% yield. A block was cut from a needle for the diffraction measurements. CHN analysis found: C 43.50, H 3.69, N 6.72%; calculated for $C_{30}H_{30}Cu_2N_4O_{12}$: C 43.54, H 3.65, N 6.77%.

Crystal data

$[Cu_2(C_3H_5O_5P)_2(C_{12}H_8N_2)_2(H_2O)_2]$	Z = 1
$M_r = 827.60$	$D_x = 1.706 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.948 (1) Å	Cell parameters from 1568
b = 10.384 (2) Å	reflections
c = 11.625 (2) Å	$\theta = 2.8-25.7^{\circ}$
$\alpha = 111.707 \ (2)^{\circ}$	$\mu = 1.49 \text{ mm}^{-1}$
$\beta = 96.514(2)^{\circ}$	T = 298 (2) K
$\gamma = 109.965 \ (2)^{\circ}$	Block, blue
V = 805.6 (2) Å ³	0.28 \times 0.24 \times 0.22 mm
Data collection	
Bruker APEX area-detector	3338 independent reflections
diffractometer	2651 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.027$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 9$
$T_{\rm min} = 0.539, T_{\rm max} = 0.735$	$k = -13 \rightarrow 11$
4524 measured reflections	$l = -13 \rightarrow 14$

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.048$	independent and constrained
$wR(F^2) = 0.133$	refinement
S = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0715P)^2]$
3338 reflections	where $P = (F_o^2 + 2F_c^2)/3$
235 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.940 (2)	Cu1-N1	2.021 (3)
Cu1-O4 ⁱ	1.947 (2)	Cu1-N2	2.029 (3)
Cu1–O1w	2.287 (3)		
O1-Cu1-O4 ⁱ	93.8 (1)	O4 ⁱ -Cu1-N1	167.9 (1)
O1-Cu1-O1w	92.6 (1)	O4 ⁱ -Cu1-N2	93.4 (1)
O1-Cu1-N1	90.2 (1)	O1w-Cu1-N1	96.5 (1)
O1-Cu1-N2	169.6 (1)	O1w-Cu1-N2	94.2 (1)
$O4^i - Cu1 - O1w$	94.7 (1)	N1-Cu1-N2	81.3 (1)
·			· · · · · · · · · · · · · · · · · · ·

Symmetry code: (i) 2 - x, 2 - y, 1 - z.

Table 2	
Hydrogen-bonding geometry (Å, $^{\circ}$).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$O1w - H1w1 \cdots O2$	0.84 (1)	1.91 (1)	2.732 (4)	167 (4)
$O1w - H1w2 \cdots O4^{i}$	0.83 (1)	2.19 (3)	2.789 (4)	129 (4)
$O3-H3O\cdots O2^{ii}$	0.84 (1)	1.76 (2)	2.569 (4)	162 (4)

Symmetry codes: (i) x - 1, y, z; (ii) 1 - x, 1 - y, 1 - z.

The water H atoms and the H atom belonging to the PO₃ group were located and refined, with distance restraints of O–H = 0.85 (1) and H···H = 1.38 (1) Å. The aliphatic and aromatic H atoms were placed in calculated positions and refined using a riding model, with C–H distances of 0.97 (aliphatic) and 0.93 Å (aromatic), and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

References

- Afonin, E. G., Sergienko, V. S. & Aleksandrov, G. G. (1998). Russ. J. Inorg. Chem. 43, 1350–1355.
- Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 248–262.
- Britel, A., Boivin, J. C., Thomas, D. & Wozniak, M. (1985). Acta Cryst. C41, 1609–1612.
- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clearfield, A. (1998). Chem. Mater. 10, 2801-2810.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stock, N., Frey, S. A., Stucky, G. D. & Cheetham, A. K. (2000). J. Chem. Soc. Dalton Trans. pp. 4292–4296.
- Zhu, J., Bu, X., Feng, P. & Stucky, G. D. (2000). J. Am. Chem. Soc. 122, 11563– 11564.